Corrigendum: Regulation of PERK–eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes
نویسندگان
چکیده
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
منابع مشابه
Regulation of PERK–eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes
Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodend...
متن کاملmTOR complex 1 signalling regulates the balance between lipid synthesis and oxidation in hypoxia lymphocytes
Mammalian cells adapt to different environmental conditions and alter cellular metabolic pathways to meet the energy demand for survival. Thus, the metabolic regulation of cells under special conditions, such as hypoxia, should be precisely regulated. During the metabolic regulation, mammalian target of rapamycin (mTOR) plays a vital role in the sensing of extracellular stimulations and regulat...
متن کاملA critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability
Disturbance of endoplasmic reticulum (ER) homoeostasis induces ER stress and leads to activation of the unfolded protein response (UPR), which is an adaptive reaction that promotes cell survival or triggers apoptosis, when homoeostasis is not restored. DDRGK1 is an ER membrane protein and a critical component of the ubiquitin-fold modifier 1 (Ufm1) system. However, the functions and mechanisms ...
متن کاملImpaired eukaryotic translation initiation factor 2B activity specifically in oligodendrocytes reproduces the pathology of vanishing white matter disease in mice.
Vanishing white matter disease (VWMD) is an inherited autosomal-recessive hypomyelinating disease caused by mutations in eukaryotic translation initiation factor 2B (eIF2B). eIF2B mutations predominantly affect the brain white matter, and the characteristic features of VWMD pathology include myelin loss and foamy oligodendrocytes. Activation of pancreatic endoplasmic reticulum kinase (PERK) has...
متن کاملThe tuberous sclerosis complex: balancing proliferation and survival.
Mutations in genes encoding either hamartin [TSC1 (tuberous sclerosis complex 1)] or tuberin (TSC2) result in a multisystem disorder characterized by the development of benign tumours and hamartomas in several organs. The TSC1 and TSC2 proteins form a complex that lies at the crossroad of many signalling pathways integrating the energy status of the cell with signals induced by nutrients and gr...
متن کامل